HyDE: Precise Zero-Shot Dense Retrieval without Relevance Labels
Listen now
Description
We discuss HyDE: a thrilling zero-shot learning technique that combines GPT-3’s language understanding with contrastive text encoders. HyDE revolutionizes information retrieval and grounding in real-world data by generating hypothetical documents from queries and retrieving similar real-world documents. It outperforms traditional unsupervised retrievers, rivaling fine-tuned retrievers across diverse tasks and languages. This leap in zero-shot learning efficiently retrieves relevant real-world information without task-specific fine-tuning, broadening AI model applicability and effectiveness. Link to transcript and live recording: https://arize.com/blog/hyde-paper-reading-and-discussion/ To learn more about ML observability, join the Arize AI Slack community or get the latest on our LinkedIn and Twitter.
More Episodes
We break down OpenAI’s realtime API. Learn how to seamlessly integrate powerful language models into your applications for instant, context-aware responses that drive user engagement. Whether you’re building chatbots, dynamic content tools, or enhancing real-time collaboration, we walk through...
Published 11/12/24
Published 11/12/24
As multi-agent systems grow in importance for fields ranging from customer support to autonomous decision-making, OpenAI has introduced Swarm, an experimental framework that simplifies the process of building and managing these systems. Swarm, a lightweight Python library, is designed for...
Published 10/29/24