Quark/Gluon Tagger in Theory and Data
Listen now
Description
Jason Gallicchio explains how distinguishing light-quark jets from gluon jets on an event-by-event basis could significantly enhance the reach for many new physics searches at the Large Hadron Collider. Through an exhaustive search of existing and novel jet substructure observables, we find that a combination of two simple variables, the charge track multiplicity and the p_T-weighted linear radial moment (width), can filter out over 85-95% of the gluon jets while keeping more than half of the light-quark jets. I will discuss applications, address theoretical issues in the definitions of quark and gluon jets, and show progress that ATLAS has made in measuring these observables.
More Episodes
Events with three or more prompt leptons are rare at hadron colliders. At the LHC, where high interaction energies and rates create extremely busy final states, such multilepton events are well suited as a probe for new physics beyond the Standard Model (BSM). Mike Hance describes some recent...
Published 10/30/12
The July 4th announcement of the discovery of a Higgs-like particle at CERN LHC is only the beginning of a challenging program of "Higgs Identification" to establish the quantum numbers and couplings of the new particle, and to reveal its relationship, if any, to electroweak symmetry-breaking and...
Published 10/29/12
Jet substructure is typically studied using clustering algorithms, such as kT, which arrange the jets' constituents into trees. Instead of considering a single tree per jet, Tuhin Roy proposes that multiple trees should be considered, weighted by an appropriate metric. Then each jet in each event...
Published 10/23/12