Bill Buchanan - Which People Have Secured Our Digital World More Than Any Other?
Listen now
Description
And, so, if you could pick one or two people who have contributed most to our online security, who would it be? Ron Rivest? Shafi Goldwasser? Ralph Merkle? Marty Hellman? Whitfield Diffie? Neal Koblitz? Well, in terms of the number of data bytes protected, that prize is likely to go to Joan Daemen and Vincent Rijmen, and who created the Rijndael method that became standardized by NIST as AES (Advanced Encryption Standard). If you are interested, Rijndael (“rain-doll”) comes from the names of its creators: Rijmen and Daemen (but don’t ask me about the rogue “l” at the end). And, so, Joan Daemen was awarded the Levchin Prize at the Real World Symposium conference in 2016: Now, his co-researcher, Vincent Rijmen — a Professor at KU Leuven — has been awarded the Levchin Prize at the Real-World Crypto Symposium [here]: This follows illustrious past winners, including Paul Kocher (for work on SSL and side-channels), Dan Coppersmith (on cryptoanalysis), Neal Koblitz and Victor Miller (for their co-invention of ECC) and Ralph Merkle (for work on digital signatures and hashing trees). Vincent’s track record in high-quality research work is exceptional and especially in the creation of the Rijndael approach to symmetric key encryption [here]: Before AES, we had many symmetric key encryption methods, including DES, 3DES, TwoFish, BlowFish, RC4, and CAST. But AES came along and replaced these. Overall, ChaCha20 is the only real alternative to AES, and where it is used in virtually every web connection that we have and is by far the most popular method in encrypting data. And, it has stood the test of time — with no known significant vulnerabilities in the method itself. Whilst we might use weak keys and have poor implementations, Rijndael has stood up well. AES method With AES, we use symmetric key encryption, and where Bob and Alice share the same secret key: In 2000/2001, NIST ran a competition on the next-generation symmetric key method, and Rijndael won. But in second place was Serpent, which was created by Ross Anderson, Eli Biham, and Lars Knudsen. Let’s have a look at the competition and then outline an implementation of Serpent in Go lang. In the end, it was the speed of Rijndael that won over the enhanced security of Serpent. If NIST had seen security as more important, we might now be using Serpent than Rijndael for AES. NIST created the race for AES (Advanced Encryption Standard). It would be a prize that the best in the industry would join, and the winner would virtually provide the core of the industry. So, in 1997, NIST announced the open challenge for a block cipher that could support 128-bit, 192-bit, and 256-bit encryption keys. The key evaluation factors were: Security: They would rate the actual security of the method against the others submitted. This would method the entropy in the ciphertext — and show that it was random for a range of input data. The mathematical foundation of the method. A public evaluation of the methods and associated attacks. Cost: The method would provide a non-exclusive, royalty-free basis licence across the world; It would be computationally and memory efficient. Algorithm and implementation characteristics: It would be flexible in its approach, and possibly offer different block sizes, key sizes, convertible into a stream cipher, and so on. Be ready for both hardware and software implementation for a range of platforms. Be simple to implement. Round 1 The call was issued on 12 Sept 1997 with a deadline of June 1998, and a range of leading industry players rushed to either create methods or polish down their existing ones. NIST announced the shortlist of candidates at a conference in August 1998, and which included some of the key leaders in the field, such as Ron Rivest, Bruce Schneier, and Ross Anderson (University of Cambridge) [report]: Australia LOKI97 (Lawrie Brown, Josef Pieprzyk, Jennifer Seberry). Belgium
More Episodes
Well, as if cybersecurity doesn’t have enough acronyms. There’s RIP, OSPF, TCP, IP, SSH, AES, and so many others. Now, there are three really important ones to remember: ML-KEM (Module Lattice-Based Key Encapsulation Mechanism), ML-DSA (Module Lattice-Based Signature Standard) and SLH-DSA...
Published 10/28/24
The cybersecurity world is changing, and where the signature methods of RSA, ECDSA and EdDSA are likely to be replaced by FIPS 204 (aka ML-DSA Module-Lattice-Based Digital Signature Standard— Dilithium) and FIPS 205 (aka SLH-DSA (Stateless Hash-based Digital Signature Standard — SPHINCS+) ...
Published 10/28/24
Published 10/28/24