#4: ~Embedding first, Chunking Later~ Jina AIが提唱したLate Chunkingについて学ぶ
Description
今回はJina AIが提唱したLate Chunkingがテーマです。
Jina AIはEmbedding model、Reranker、Semantic chunking等のAPIを公開しているRAGに取り組む上では注目の企業です。
そんなJina AIが提唱したチャンキング手法であるLate Chunkingについて話しました。
ポッドキャストの書き起こしサービス「LISTEN」はこちら
Shownotes:
Jina.ai
Late Chunking in Long-Context Embedding Models
Late Chunking: Balancing Precision and Cost in Long Context Retrieval | Weaviate
Training Text Embeddings with Jina AI
What is ColBERT and Late Interaction and Why They Matter in Search?
https://x.com/s_tat1204/status/1837932815931134138
出演者:
seya(@sekikazu01)
kagaya(@ry0_kaga)
LLM-as-a-Judgeに着想を得て、エージェンティックシステムを評価するためにエージェンティックシステムを用いることを提案したAgent-as-a-Judge: Evaluate Agents with...
Published 11/18/24
Ubie社の事例に触発されて社内v0開発を始めた2人で、開発の知見や悩み、Figma AI等のデザインAIについて話しました
ポッドキャストの書き起こしサービス「LISTEN」はこちら
Shownotes:
https://v0.dev/
https://www.figma.com/ja-jp/ai/
https://x.com/sys1yagi/status/1850763720630387170
出演者:
seya(@sekikazu01)
kagaya(@ry0_kaga)
Published 11/14/24