4 - Risks from Learned Optimization with Evan Hubinger
Listen now
In machine learning, typically optimization is done to produce a model that performs well according to some metric. Today's episode features Evan Hubinger talking about what happens when the learned model itself is doing optimization in order to perform well, how the goals of the learned model could differ from the goals we used to select the learned model, and what would happen if they did differ. Link to the paper - Risks from Learned Optimization in Advanced Machine Learning Systems Link to the transcript Evan Hubinger's Alignment Forum profile
More Episodes
What's going on with deep learning? What sorts of models get learned, and what are the learning dynamics? Singular learning theory is a theory of Bayesian statistics broad enough in scope to encompass deep neural networks that may help answer these questions. In this episode, I speak with Daniel...
Published 05/07/24
Top labs use various forms of "safety training" on models before their release to make sure they don't do nasty stuff - but how robust is that? How can we ensure that the weights of powerful AIs don't get leaked or stolen? And what can AI even do these days? In this episode, I speak with Jeffrey...
Published 04/30/24