Description
TiTok introduces a novel 1D tokenization method for image generation, enabling the representation of images with significantly fewer tokens while maintaining or surpassing the performance of existing 2D grid-based methods. The approach leverages a Vision Transformer architecture, two-stage training with proxy codes, and achieves remarkable speedup in training and inference. The research opens up new possibilities for efficient and high-quality image generation, with implications for various applications in computer vision and beyond.
The paper addresses the challenge of balancing accuracy and efficiency in large language models (LLMs) by exploring quantization techniques. Specifically, it focuses on reducing the precision of model parameters to smaller bit sizes while maintaining performance on zero-shot tasks. The research...
Published 08/12/24
The podcast discusses the AutoPruner paper, which addresses the challenge of computational efficiency in deep neural networks through end-to-end trainable filter pruning. The paper introduces a novel methodology that integrates filter selection into the model training process, leading to both...
Published 08/11/24