Chapter Eleven: Regulation of Acid-Base Balance, part 1
Listen now
Description
References We considered the effect of a high protein diet and potential metabolic acidosis on kidney function. This review is of interest by Donald Wesson, a champion for addressing this issue and limiting animal protein: Mechanisms of Metabolic Acidosis-Induced Kidney Injury in Chronic Kidney Disease Hostetter explored the effect of a high protein diet in the remnant kidney model with 1 ¾ nephrectomy. Rats with reduced dietary acid load (by bicarbonate supplementation) had less tubular damage. Chronic effects of dietary protein in the rat with intact and reduced renal mass Wesson explored treatment of metabolic acidosis in humans with stage 3 CKD in this study. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate In addition to the effect of metabolic acidosis from a diet high in animal protein, this diet also leads to hyperfiltration. This was demonstrated in normal subjects;  ingesting a protein diet had a significantly higher creatinine clearance than a comparable group of normal subjects ingesting a vegetarian diet.   Renal functional reserve in humans: Effect of protein intake on glomerular filtration rate.This finding has been implicated in Brenner’s theory regarding hyperfiltration: The hyperfiltration theory: a paradigm shift in nephrology One of multiple publications from Dr. Nimrat Goraya whom Joel mentioned in the voice over: Dietary Protein as Kidney Protection: Quality or Quantity? We wondered about the time course in buffering a high protein meal (and its subsequent acid load on ventilation) and Amy found this report:Effect of Protein Intake on Ventilatory Drive | Anesthesiology | American Society of Anesthesiologists  Roger mentioned that the need for acetate to balance the acid from amino acids in parenteral nutrition was identified in pediatrics perhaps because infants may have reduced ability to generate acid. Randomised controlled trial of acetate in preterm neonates receiving parenteral nutrition - PMC He also recommended an excellent review on the complications of parenteral nutrition by Knochel https://www.kidney-international.org/action/showPdf?pii=S0085-2538%2815%2933384-6 which explained that when the infused amino acids disproportionately include cationic amino acids, metabolism led to H+ production. This is typically mitigated by preparing a solution that is balanced by acetate.  Amy mentioned this study that explored the effect of protein intake on ventilation: Effect of Protein Intake on Ventilatory Drive | Anesthesiology | American Society of Anesthesiologists Anna and Amy reminisced about a Skeleton Key Group Case from the renal fellow network Skeleton Key Group: Electrolyte Case #7 JC wondered about isolated defects in the proximal tubule and an example is found here: Mutations in SLC4A4 cause permanent isolated proximal renal tubular acidosis with ocular abnormalities Anna’s Voiceover re:  Gastric neobladder → metabolic alkalosis and yes, dysuria.  The physiology of gastrocystoplasty: once a stomach, always a stomach  but not as common as you might think Gastrocystoplasty: long-term complications in 22 patients Sjögren’s syndrome has been associated with acquired distal RTA and in some cases, an absence of the H+ ATPase, presumably from autoantibodies to this transporter. Here’s a case report: Absence of H(+)-ATPase in cortical collecting tubules of a patient with Sjogren's syndrome and distal renal tubular acidosis Can't get enough disequilibrium pH? Check this out- Spontaneous luminal disequilibrium pH in S3 proximal tubules. Role in ammonia and bicarbonate transport. Acetazolamide secretion was studied in this report Concentration-dependent tubular secretion of acetazolamide and its inhibition by salicylic acid in the isolated perfused rat kidney. | Drug Metabolism & Disposition In this excellent review, David Goldfarb tackl
More Episodes
Outline Chapter 14 — Treatment - Treatment - Both oral and IV treatment can be used for volume replacement - The goal of therapy are to restore normovolemia - And to correct associated acid-base and electrolyte disorders - Oral Therapy - Usually can...
Published 03/24/24
Published 03/24/24
Outline Chapter 14 - Hypovolemic States - Etiology - True volume depletion occurs when fluid is lost from from the extracellular fluid at a rate exceeding intake - Can come the GI tract - Lungs - Urine - Sequestration in the body in a “third space” that is not...
Published 01/29/24