Description
In this episode, the data scientist Wentao Su shares his experience in AB testing on social media platforms like LinkedIn and TikTok.
We talk about how network science can enhance AB testing by accounting for complex social interactions, especially in environments where users are both viewers and content creators. These interactions might cause a "spillover effect" meaning a possible influence across experimental groups, which can distort results.
To mitigate this effect, our guest presents heuristics and algorithms they developed ("one-degree label propagation”) to allow for good results on big data with minimal running time and so optimize user experience and advertiser performance in social media platforms.
Alex Bisberg, a PhD candidate at the University of Southern California, specializes in network science and game analytics, with a focus on understanding social and competitive success in multiplayer online games.
In this episode, listeners can expect to learn from a network perspective about...
Published 11/18/24
In this episode we discuss the GitHub Collaboration Network with Behnaz Moradi-Jamei, assistant professor at James Madison University. As a network scientist, Behnaz created and analyzed a network of about 700,000 contributors to Github's repository. The network of collaborators on GitHub was...
Published 11/11/24