Training Multi-Modal AI: Inside the Jina CLIP Embedding Model | S2 E11
Listen now
Description
Today we are talking to Michael Günther, a senior machine learning scientist at Jina about his work on JINA Clip. Some key points: Uni-modal embeddings convert a single type of input (text, images, audio) into vectorsMultimodal embeddings learn a joint embedding space that can handle multiple types of input, enabling cross-modal search (e.g., searching images with text)Multimodal models can potentially learn richer representations of the world, including concepts that are difficult or impossible to put into wordsTypes of Text-Image Models CLIP-like ModelsSeparate vision and text transformer modelsEach tower maps inputs to a shared vector spaceOptimized for efficient retrievalVision-Language ModelsProcess image patches as tokensUse transformer architecture to combine image and text informationBetter suited for complex document matchingHybrid ModelsCombine separate encoders with additional transformer componentsAllow for more complex interactions between modalitiesExample: Google's Magic Lens modelTraining Insights from Jina CLIP Key LearningsFreezing the text encoder during training can significantly hinder performanceShort image captions limit the model's ability to learn rich text representationsLarge batch sizes are crucial for training embedding models effectivelyTraining ProcessThree-stage training approach: Stage 1: Training on image captions and text pairsStage 2: Adding longer image captionsStage 3: Including triplet data with hard negativesPractical Considerations Similarity ScalesDifferent modalities can produce different similarity value scalesImportant to consider when combining multiple embedding typesCan affect threshold-based filteringModel SelectionEvaluate models based on relevant benchmarksConsider the domain similarity between training data and intended use caseAssessment of computational requirements and efficiency needsFuture Directions Areas for DevelopmentMore comprehensive benchmarks for multimodal tasksBetter support for semi-structured dataImproved handling of non-photographic imagesUpcoming Developments at Jina AIMultilingual support for Jina ColBERTNew version of text embedding modelsFocus on complex multimodal search applicationsPractical Applications E-commerceProduct search and recommendationsCombined text-image embeddings for better resultsSynthetic data generation for fine-tuningFine-tuning StrategiesUsing click data and query logsGenerative pseudo-labeling for creating training dataDomain-specific adaptationsKey Takeaways for Engineers Be aware of similarity value scales and their implicationsEstablish quantitative evaluation metrics before optimizationConsider model limitations (e.g., image resolution, text length)Use performance optimizations like flash attention and activation checkpointingUniversal embedding models might not be optimal for specific use casesMichael Guenther LinkedInX (Twitter)Jina AINew Multilingual Embedding ModalNicolay Gerold: ⁠LinkedIn⁠⁠X (Twitter)00:00 Introduction to Uni-modal and Multimodal Embeddings 00:16 Exploring Multimodal Embeddings and Their Applications 01:06 Training Multimodal Embedding Models 02:21 Challenges and Solutions in Embedding Models 07:29 Advanced Techniques and Future Directions 29:19 Understanding Model Interference in Search Specialization 30:17 Fine-Tuning Jina CLIP for E-Commerce 32:18 Synthetic Data Generation and Pseudo-Labeling 33:36 Challenges and Learnings in Embedding Models 40:52 Future Directions and Takeaways
More Episodes
Documentation quality is the silent killer of RAG systems. A single ambiguous sentence might corrupt an entire set of responses. But the hardest part isn't fixing errors - it's finding them. Today we are talking to Max Buckley on how to find and fix these errors. Max works at Google and has built...
Published 11/21/24
Ever wondered why vector search isn't always the best path for information retrieval? Join us as we dive deep into BM25 and its unmatched efficiency in our latest podcast episode with David Tippett from GitHub. Discover how BM25 transforms search efficiency, even at GitHub's immense scale. BM25,...
Published 11/15/24
Published 11/15/24