Description
We will show taht one can combine Malliavin calculus with Stein's method, in order to derive explicit bounds in the Gaussian and Gamma approximations of arbitrary regular functionals of a given Gaussian field (here, the notion of regularity is in the sense of Malliavin derivability). When applied to random variables belonging to a fixed Wiener chaos, our approach generalizes, refines proved (in several papers, from 2005 to 2007) by Nourdin, Nualart, Ortiz-Latorre, Peccati and Tudor. We shall discuss some connections with the classic method of moments and cumulants. As an application, we deduce explicit Berry-Esseen bounds in the Breuer-Major Central limit theorem for subordinated functionals of a fractional Brownian motion. This talk is based on joint works with I. Nourdin (Paris VI). Giovanni PECCATI. Université de Paris 6. Document associé : support de présentation : http://epi.univ-paris1.fr/servlet/com.univ.collaboratif.utils.LectureFichiergw?CODE_FICHIER=1207750005329 (pdf) Ecouter l'intervention : Bande son disponible au format mp3 Durée : 41 mn
Jean Jacod. Université Paris6. Document associé : support de présentation : http://epi.univ-paris1.fr/servlet/com.univ.collaboratif.utils.LectureFichiergw?CODE_FICHIER=1265816883468 (pdf) Ecouter l'intervention : Bande son disponible au format mp3 Durée : 51 mn
Published 01/13/08
In this paper, we give estimates of ideal or minimal distances between the distribution of the normalized partial sum and the limiting Gaussian distribution for stationary martingale difference sequences or stationary sequences satisfying projective criteria. Applications to functions of linear...
Published 01/12/08