04 - Asymptotic results for empirical measures of weighted sums of independant random variables- Bernard BERCU
Listen now
Description
We investigate the asymptotic behavior of a particular family of weighted sums of independent standardized random variables with uniformly bounded third moments. We prove that the empirical CDF of the resulting partial sums converges almost surely to the normal CDF. It allows us to deduce the almost sure uniform convergence of empirical distribution of the empirical periodogram as well as the almost sure uniform convergence of spectral distribution of symmetric circulant random matrices. In the special case of trigonometric weights, we also establish a central limit theorem and a large deviation principle. It is a joint workwith W. Bryc. Bernard BERCU Université de Bordeaux 1 Document associé : support de présentation : http://epi.univ-paris1.fr/servlet/com.univ.collaboratif.utils.LectureFichiergw?CODE_FICHIER=1207750057287 (pdf) Ecouter l'intervention : Bande son disponible au format mp3 Durée : 35 mn
More Episodes
Jean Jacod. Université Paris6. Document associé : support de présentation : http://epi.univ-paris1.fr/servlet/com.univ.collaboratif.utils.LectureFichiergw?CODE_FICHIER=1265816883468 (pdf) Ecouter l'intervention : Bande son disponible au format mp3 Durée : 51 mn
Published 01/13/08
In this paper, we give estimates of ideal or minimal distances between the distribution of the normalized partial sum and the limiting Gaussian distribution for stationary martingale difference sequences or stationary sequences satisfying projective criteria. Applications to functions of linear...
Published 01/12/08