01 - Inverse problems for regular variation, linear filters, functional equations and a cancellation property for $\sigma$-finite measures - Gennady SAMORODNITSKY
Description
We study a group of related problems: the extent to which presence of regular variation of the tail of certain $sigma$-finite measures at the output of a linear filter determines the corresponding regular variation of a measure at the input to the filter. This turns out to be related to presence of a particular cancellation property in $sigma$-finite measures, which, in turn, is related to uniqueness of solutions of certain functional equations. The techniques we develop are applied to weighted sums of iid random variables, to products of independent random variables, and to stochastic integrals with respect to Lévy motions. Joint work with Martin Jacobsen, Thomas Mikosch and Jan Rosinski. Gennady SAMORODNITSKY. Cornell University. Document associé : support de présentation : http://epi.univ-paris1.fr/servlet/com.univ.collaboratif.utils.LectureFichiergw?CODE_FICHIER=1207750230504 (pdf) Ecouter l'intervention : Bande son disponible au format mp3 Durée : 47 mn
Jean Jacod. Université Paris6. Document associé : support de présentation : http://epi.univ-paris1.fr/servlet/com.univ.collaboratif.utils.LectureFichiergw?CODE_FICHIER=1265816883468 (pdf) Ecouter l'intervention : Bande son disponible au format mp3 Durée : 51 mn
Published 01/13/08
In this paper, we give estimates of ideal or minimal distances between the distribution of the normalized partial sum and the limiting Gaussian distribution for stationary martingale difference sequences or stationary sequences satisfying projective criteria. Applications to functions of linear...
Published 01/12/08