03 - Central limit theorem for sampled sums of dependent random variables - Clémentine PRIEUR
Listen now
Description
We prove a central limit theorem for linear triangular arrays under weak dependence conditions [1,3,4]. Our result is then applied to the study of dependent random variables sampled by a $Z$-valued transient random walk. This extends the results obtained by Guillotin-Plantard & Schneider [2]. An application to parametric estimation by random sampling is also provided. References: [1] Dedecker J., Doukhan P., Lang G., Leon J.R., Louhichi S. and Prieur C. (2007). Weak dependence: With Examples and Applications. Lect. notes in Stat. 190. Springer, XIV. [2] N. Guillotin-Plantard and D. Schneider (2003). Limit theorems for sampled dynamical systems. Stochastic and Dynamics 3, 4, p. 477-497. [3] M. Peligrad and S. Utev (1997). Central limit theorem for linear processes. Ann. Probab. 25, 1, p. 443-456. [4] S. A. Utev (1991). Sums of random variables with $varphi$-mixing. Siberian Advances in Mathematics 1, 3, p. 124-155. Clémentine PRIEUR. Université de Toulouse 1. Document associé : support de présentation : http://epi.univ-paris1.fr/servlet/com.univ.collaboratif.utils.LectureFichiergw?CODE_FICHIER=1207750339872 (pdf) Ecouter l'intervention : Bande son disponible au format mp3 Durée : 33 mn
More Episodes
Jean Jacod. Université Paris6. Document associé : support de présentation : http://epi.univ-paris1.fr/servlet/com.univ.collaboratif.utils.LectureFichiergw?CODE_FICHIER=1265816883468 (pdf) Ecouter l'intervention : Bande son disponible au format mp3 Durée : 51 mn
Published 01/13/08
In this paper, we give estimates of ideal or minimal distances between the distribution of the normalized partial sum and the limiting Gaussian distribution for stationary martingale difference sequences or stationary sequences satisfying projective criteria. Applications to functions of linear...
Published 01/12/08