Description
A popular Bayesian nonparametric approach to survival analysis consists in modeling hazard rates as kernel mixtures driven by a completely random measure. A comprehensive analysis of the asymptotic behaviour of such models is provided. Consistency of the posterior distribution is investigated and central limit theorems for both linear and quadratic functionals of the posterior hazard rate are derived. The general results are then specialized to various specific kernels and mixing measures, thus yielding consistency under minimal conditions and neat central limit theorems for the distribution of functionals. Joint work with P. De Blasi and G. Peccati. Igor PRUNSTER. University of Turin. Document associé : support de présentation : http://epi.univ-paris1.fr/servlet/com.univ.collaboratif.utils.LectureFichiergw?CODE_FICHIER=1207750819712 (pdf) Ecouter l'intervention : Bande son disponible au format mp3 Durée : 46 mn
Jean Jacod. Université Paris6. Document associé : support de présentation : http://epi.univ-paris1.fr/servlet/com.univ.collaboratif.utils.LectureFichiergw?CODE_FICHIER=1265816883468 (pdf) Ecouter l'intervention : Bande son disponible au format mp3 Durée : 51 mn
Published 01/13/08
In this paper, we give estimates of ideal or minimal distances between the distribution of the normalized partial sum and the limiting Gaussian distribution for stationary martingale difference sequences or stationary sequences satisfying projective criteria. Applications to functions of linear...
Published 01/12/08