06 - Invariance principle, multifractional Gaussian processes and long-range dependence - Renaud MARTY
Listen now
Description
We establish an invariance principle where the limit process is a multifractional Gaussian process with a multifractional function which takes its values in (1/2, 1). Some properties, such as regularity and local self-similarity, of this process are studied. Moreover the limit process is compared to the multifractional Brownian motion. Renaud MARTY. Université Nancy1. Document associé : support de présentation : http://epi.univ-paris1.fr/servlet/com.univ.collaboratif.utils.LectureFichiergw?CODE_FICHIER=1207750851448 (pdf) Ecouter l'intervention : Bande son disponible au format mp3 Durée : 32 mn
More Episodes
Jean Jacod. Université Paris6. Document associé : support de présentation : http://epi.univ-paris1.fr/servlet/com.univ.collaboratif.utils.LectureFichiergw?CODE_FICHIER=1265816883468 (pdf) Ecouter l'intervention : Bande son disponible au format mp3 Durée : 51 mn
Published 01/13/08
In this paper, we give estimates of ideal or minimal distances between the distribution of the normalized partial sum and the limiting Gaussian distribution for stationary martingale difference sequences or stationary sequences satisfying projective criteria. Applications to functions of linear...
Published 01/12/08