Gaussian Processes
Listen now
Description
It’s pretty common to fit a function to a dataset when you’re a data scientist. But in many cases, it’s not clear what kind of function might be most appropriate—linear? quadratic? sinusoidal? some combination of these, and perhaps others? Gaussian processes introduce a nonparameteric option where you can fit over all the possible types of functions, using the data points in your datasets as constraints on the results that you get (the idea being that, no matter what the “true” underlying function is, it produced the data points you’re trying to fit). What this means is a very flexible, but depending on your parameters not-too-flexible, way to fit complex datasets. The math underlying GPs gets complex, and the links below contain some excellent visualizations that help make the underlying concepts clearer. Check them out! Relevant links: http://katbailey.github.io/post/gaussian-processes-for-dummies/ https://thegradient.pub/gaussian-process-not-quite-for-dummies/ https://distill.pub/2019/visual-exploration-gaussian-processes/
More Episodes
All good things must come to an end, including this podcast. This is the last episode we plan to release, and it doesn’t cover data science—it’s mostly reminiscing, thanking our wonderful audience (that’s you!), and marveling at how this thing that started out as a side project grew into a huge...
Published 07/26/20
The data science and artificial intelligence community has made amazing strides in the past few years to algorithmically automate portions of the healthcare process. This episode looks at two computer vision algorithms, one that diagnoses diabetic retinopathy and another that classifies liver...
Published 07/19/20
A few weeks ago, we put out a call for data scientists interested in issues of race and racism, or people studying how those topics can be studied with data science methods, should get in touch to come talk to our audience about their work. This week we’re excited to bring on Todd Hendricks, Bay...
Published 07/13/20