Kristallgittermodelle
Listen now
Description
Gudrun spricht mit Axel Voigt. Er ist Professor für Wissenschaftliches Rechnen und Angewandte Mathematik an der TU Dresden. Axel war Ende Oktober 2019 zu Gast in Gudruns Arbeitsgruppe, um seine Modelle für Kristallgitter zu diskutieren. Der Wunsch der Gruppe war, sowohl die Modelle als auch die dafür passenden numerischen Verfahren besser zu verstehen. Sie sind insbesondere für die Simulation der Vorgänge in Akkumulatoren interessant, die im Rahmen das Graduiertenkollegs SiMET vorangetrieben werden. Viele feste Körper haben eine Gitterstruktur. Für z.B. Silizium, Aluminium und Stahl ist dies ein Kristallgitter. In der Schule wird es der Einfachheit halber oft so dargestellt, als wäre das Kristallgitter eine feste Größe für solche Stoffe. In der Natur sind es aber polykristalline Materialien. D.h. sie bestehen aus vielen unterschiedlichen Einzelkristallen. Diese sind durch Korngrenzen voneinander getrennt. Das Studium polykristalliner Materialien erfordert theoretische und rechnerische Techniken, die Untersuchungen auf unterschiedlich großen Skalen ermöglichen. Kristallgitterverformungen können mikroskopisch beschrieben werden, indem die Position der Atome explizit berücksichtigt wird, oder makroskopisch durch Kontinuumselastizität. Grobkörnige, mesoskalige Ansätze sind daher geeignete Werkzeuge, um Informationen über polykristalline Materialien bereitzustellen. In seiner Forschung betrachtet Axel sie als kontinuierliche elastische Felder, die aus einer atomistischen Darstellung der kristallinen Strukturen abgeleitet sind. So enthält sie auch wichtige Merkmale, die für die mikroskopische Skala typisch sind. Die Größe und Phase der Amplituden der Fourierspektrum, zusammen mit der kontinuierlichen Beschreibung der Dehnungen, sind in der Lage, Kristalldrehungen, Gitterverformungen und Versetzungen zu charakterisieren. Darüber hinaus stellen sie in Kombination mit der so genannten Amplitudenerweiterung des Phasenfeld-Kristallmodells ein geeignetes Werkzeug zur Überbrückung mikroskopischer bis makroskopischer Skalen dar. Die Amplitudenerweiterung des Phasenfeld-Kristallmodells ermöglicht es, die Kristallgittereigenschaften auf diffusen Zeitskalen zu beschreiben, indem sie sich auf kontinuierliche Felder konzentriert, die auf Längenskalen variieren, die größer als der Atomabstand sind. So ermöglicht es die Simulation großer Systeme, die noch Details des Kristallgitters beibehalten. Axel Voigt hat an der TU München studiert und promoviert. Nach einem Ausflug in die Wirtschaft war er ab 2001 Gruppenleiter am Forschungsinstitut caesar in Bonn und hat sich dort auch habilitiert. Seit 2007 ist er in Dresden an der TU als Professor tätig.
More Episodes
Gudrun sprach im Januar 2024 mit zwei Studenten ihrer Vorlesung Mathematical Modelling and Simulation: Lukas Ullmer und Moritz Vogel. Sie hatten in ihrem Projekt Wahlmodelle ananlysiert. In dem Gespräch geht es darum, wie man hierfür mathematische Modelle findet, ob man Wahlsysteme fair gestalten...
Published 02/10/24
Published 02/10/24
In dieser Folge geht es darum, wie Sebastian und Gudrun Mathematik an Hochschulen unterrichten und welche Rollen das Medium Podcast und konkret unser Podcast Modellansatz dabei spielen. Die Fragen stellte unsere Hörerin Franziska Blendin, die in der Folge 233 im Jahr 2020 über Ihr Fernstudium...
Published 10/03/23