Machine Learning - Maschinelles Lernen
Listen now
Description
Gudrun spricht mit Sebastian Lerch vom Institut für Stochastik in der KIT-Fakultät für Mathematik. Vor einiger Zeit - Anfang 2015 - hatten die beiden schon darüber gesprochen, wie extreme Wetterereignisse stochastisch modelliert werden können. Diesmal geht es um eine Lehrveranstaltung, die Sebastian extra konzipiert hat, um für Promovierende aller Fachrichtungen am KIT eine Einführung in Machine Learning zu ermöglichen. Der Rahmen hierfür ist die Graduiertenschule MathSEED, die ein Teil des im Oktober 2018 gegründeten KIT-Zentrums MathSEE ist. Es gab schon lange (und vielleicht immer) Angebote am KIT, die insbesondere Ingenieure an moderne Mathematik heranführten, weil sie deren Methoden schon in der Masterphase oder spätestens während der Promotion brauchten, aber nicht durch die klassischen Inhalten der Höheren Mathematik abgedeckt werden. All das wird nun gebündelt und ergänzt unter dem Dach von MathSEED. Außerdem funktioniert das nun in beide Richtungen: Mathematiker:innen, werden ebenso zu einführenden Angeboten der anderen beteiligten Fakultäten eingeladen. Das Thema Maschinelles Lernen und Künstliche Intelligenz war ganz oben auf der Wunschliste für neu zu schaffende Angebote. Im Februar 2020 hat Sebastian diese Vorlesung erstmalig konzipiert und gehalten - die Übungen wurden von Eva-Maria Walz betreut. Die Veranstaltung wird im Herbst 2020 wieder angeboten. Es ist nicht ganz einfach, die unterschiedlichen Begriffe, die für Künstliche Intelligenz (kurz: KI) benutzt werden gegeneinander abzutrennen, zumal die Sprechweisen in unterschiedlichen Kontexten unterschiedlich sind. Hinzu tritt, dass mit der Verfügbarkeit großer Datenmengen und der häufigen Nutzung von KI und Big Data gemeinsam auch hier vieles vermischt wird. Sebastian defininiert Maschinelles Lernen als echte Teilmenge von KI und denkt dabei auch daran, dass z.B. symbolisches Rechnen KI ist. Ebenso geben schon lange sogenannte Expertensysteme Hilfestellung für Entscheidungen. Hier geben Regeln ein Programm vor, das Daten-Input zu einem Output verwandelt. Heute denken wir bei KI eher daran, dass z.B. der Computer lernt wie ein Bild eines Autos aussieht, ohne dass dafür klare Regeln vorgegeben werden. Dies ist eher vergleichbar damit, wie Kinder lernen. Die modernste Variante ist sogenanntes Deep Learning auf der Basis von Neuronalen Netzen. Die Abgrenzung zu statistischen Verfahren ist mitunter nicht so klar. Das Neuronale Netz wird dabei eine Black Box, was wissenschaftlich arbeitende Menschen nicht ganz befriedigt. Aber mit ihrer Hilfe werden komplexere Probleme lösbar. Forschung muss versuchen, die Entscheidungen der Black Box nachvollziehbar zu machen und entscheiden, wann die Qualität ausreicht. Dazu muss man sich überlegen: Wie misst man Fehler? In der Bildverarbeitung kann es genügen, z.B. falsch erkannte Autos zu zählen. In der Wettervorhersage lässt sich im Nachhinein feststellen, welche Fehler in der Vorhersage gemacht wurden. (...)
More Episodes
Gudrun sprach im Januar 2024 mit zwei Studenten ihrer Vorlesung Mathematical Modelling and Simulation: Lukas Ullmer und Moritz Vogel. Sie hatten in ihrem Projekt Wahlmodelle ananlysiert. In dem Gespräch geht es darum, wie man hierfür mathematische Modelle findet, ob man Wahlsysteme fair gestalten...
Published 02/10/24
Published 02/10/24
In dieser Folge geht es darum, wie Sebastian und Gudrun Mathematik an Hochschulen unterrichten und welche Rollen das Medium Podcast und konkret unser Podcast Modellansatz dabei spielen. Die Fragen stellte unsere Hörerin Franziska Blendin, die in der Folge 233 im Jahr 2020 über Ihr Fernstudium...
Published 10/03/23