Description
We explore nonlinear optical phenomena at the nanoscale by launching femtosecond laser pulses into long silica nanowires. Using evanescent coupling between wires we demonstrate a number of nanophotonic devices. At high intensity, the nanowires produce a strong supercontinuum over short interaction lengths (less than 20 mm) and at a very low energy threshold (about 1 nJ), making them ideal sources of coherent white light for nanophotonic applications. The spectral broadening reveals an optimal fiber diameter to enhance nonlinear effects with minimal dispersion. We also present a device that permits a number of all-optical logic operations with femtosecond laser pulses in the nanojoule range.
Abstract: The physical limit for the number of pixels per color channel per frame in an optical imager is approximately equal to the aperture area in square microns. While this limit is essentially achieved in megapixel scale cell phone cameras, the limit of 100 megapixels for cm apertures, 10...
Published 10/18/12
Abstract:
The fate of an ultrashort laser pulse propagating in air depends crucially upon its peak power. Below a critical value, Pcr, group velocity dispersion and beam diffraction combine to rapidly reduce the pulse intensity. On the other hand, if P is less than Pcr, a completely different...
Published 10/18/12
Abstract: Organic semiconductor materials offer the potential of low-cost and flexible displays and lighting solutions, some of which have already made it to the marketplace. Despite this, much of the underlying optical physics remains poorly understood and hinders progress towards better and...
Published 10/18/12