02 - Lien entre la notion de Copula et la tomographie - Ali MOHAMMAD-DJAFARI
Listen now
Description
Un problème important en statistiques est de trouver une loi de probabilité jointe entre deux variables à partir de ses lois marginales. Dans le cas de deux variables, les densités marginales f1(x) et f2(y) sont liées à leurs distribution jointe f(x,y) via des intégrations suivant les deux axes horizontal et vertical. Ce problème ressemble à un problème de reconstruction d'image en tomographie où on chercherait à reconstruire une image à partir de seulement deux projections. Ce problème est un problème mal-posé au sens qu'il admet une infinité de solutions, et justement, la notion de "Copula" qui permet de caractériser l'ensemble des lois jointes avec des marginales données, peut être utilisé en tomographie pour caractériser l'ensemble des images compatibles avec deux projections. On pourra alors rechercher une solution particulière dans cet ensemble. A l'inverse, nous pensons que les techniques de reconstruction d'image peuvent apporter une nouvelle voie dans la détermination d'une loi jointe à partir de ses lois marginales, un sujet qui est très important en inférence statistiques. An important problem in statistics is determining a joint probability distribution from its marginals. In 2D case, the marginal probability density functions f1(x) and f2(y) are related to their joint distribution f(x,y) via the horizontal and vertical line integrals. So, the problem of determining f(x,y) from f1(x) and f2(y) is an ill-posed inverse problem. In statistics the notion of emph{copula} is exactly introduced to obtain a solution to this problem. Interestingly, this is also a problem encountered in X ray tomography image reconstruction where f(x,y) is an image representing the distribution of the material density and f1(x) and f2(y) are the horizontal and vertical line integrals. In this talk we try to link the notion of copula to X ray Computed Tomography (CT) and to see if we can use the methods used in each domain to the other one. Ceci est un travail commun avec Doriano Pougaza et Jean Francois Bercher. Ali Mohammad-Djafari. Supélec. Vous pouvez entendre l'intervention, tout en visualisant le Power Point, en cliquant sur ce lien : http://epn.univ-paris1.fr/modules/ufr27statim/UFR27STATIM-20090123-Djafari/UFR27STATIM-20090123-Djafari.html. Ecouter l'intervention : Bande son disponible au format mp3 Durée : 49 mn
More Episodes
La réduction de dimension a pour ambition de produire des représentations en faible dimension d'ensembles de données en haute dimension. Un des objectifs principaux de la réduction de dimension est la visualisation de données (en dimension 2 ou 3). De nombreuses méthodes de réduction de dimension...
Published 01/22/09
Les premiers niveaux du système visuel des primates sont maintenant bien connus. Dans cet exposé, nous présentons leur architecture et leurs fonctions comme un modèle pour le traitement et l'analyse des images. Tout y apparaît comme bien adapté à la statistique des images pour en réduire la...
Published 01/22/09