Description
Sylvain Gugger is a former math teacher who fell into machine learning via a MOOC and became an expert in the low-level performance details of neural networks. He’s now on the ML infrastructure team at Jane Street, where he helps traders speed up their models. In this episode, Sylvain and Ron go deep on learning rate schedules; the subtle performance bugs PyTorch lets you write; how to keep a hungry GPU well-fed; and lots more, including the foremost importance of reproducibility in training runs. They also discuss some of the unique challenges of doing ML in the world of trading, like the unusual size and shape of market data and the need to do inference at shockingly low latencies.
Liora Friedberg is a Production Engineer at Jane Street with a background in economics and computer science. In this episode, Liora and Ron discuss how production engineering blends high-stakes puzzle solving with thoughtful software engineering, as the people doing support build tools to make...
Published 10/07/24
Erin Murphy is Jane Street’s first UX designer, and before that, she worked at NASA’s Jet Propulsion Laboratory building user interfaces for space missions. She’s also an illustrator with her own quarterly journal. In this episode, Erin and Ron discuss the challenge of doing user-centered design...
Published 07/12/24