2.1 Mixed-Membership Stochastic Block-Models for Transactional Data (Hugh Chipman)
Listen now
Description
Transactional network data arise in many fields. Although social network models have been applied to transactional data, these models typically assume binary relations between pairs of nodes. We develop a latent mixed membership model capable of modelling richer forms of transactional data. Estimation and inference are accomplished via a variational EM algorithm. Simulations indicate that the learning algorithm can recover the correct generative model. We further present results on a subset of the Enron email dataset. This is a joint work with Mahdi Shafiei.
More Episodes
Social network data represent the interactions between a group of social actors. Interactions between colleagues and friendship networks are typical examples of such data. The latent space model for social network data locates each actor in a network in a latent (social) space and models the...
Published 12/04/14
We consider the problem of Gaussian regression (possibly in a high- dimensional setting) when the noise variance is unknown. We propose a procedure which selects within any collection of estimators, an estimator hatf that nearly achieves the best bias/variance trade off. This selection procedure...
Published 12/04/14