Description
Today, we're joined by Arash Behboodi, director of engineering at Qualcomm AI Research to discuss the papers and workshops Qualcomm will be presenting at this year’s NeurIPS conference. We dig into the challenges and opportunities presented by differentiable simulation in wireless systems, the sciences, and beyond. We also explore recent work that ties conformal prediction to information theory, yielding a novel approach to incorporating uncertainty quantification directly into machine learning models. Finally, we review several papers enabling the efficient use of LoRA (Low-Rank Adaptation) on mobile devices (Hollowed Net, ShiRA, FouRA). Arash also previews the demos Qualcomm will be hosting at NeurIPS, including new video editing diffusion and 3D content generation models running on-device, Qualcomm's AI Hub, and more!
The complete show notes for this episode can be found at https://twimlai.com/go/711.
Today, we're joined by Byron Cook, VP and distinguished scientist in the Automated Reasoning Group at AWS to dig into the underlying technology behind the newly announced Automated Reasoning Checks feature of Amazon Bedrock Guardrails. Automated Reasoning Checks uses mathematical proofs to help...
Published 12/09/24
Today, we're joined by Shirley Wu, senior director of software engineering at Juniper Networks to discuss how machine learning and artificial intelligence are transforming network management. We explore various use cases where AI and ML are applied to enhance the quality, performance, and...
Published 11/19/24