Probabilistic regional liquefaction hazard and risk analysis: A case study of residential buildings in Alameda, CA (In-person presentation)
Listen now
Description
Emily Mongold, Stanford University The impact of liquefaction on a regional scale is not well understood or modeled with traditional approaches. This paper presents a method to quantitatively assess liquefaction hazard and risk on a regional scale, accounting for uncertainties in soil properties, groundwater conditions, ground shaking parameters, and empirical liquefaction potential index (LPI) equations. The regional analysis is applied to a case study to calculate regional occurrence rates for the extent and severity of liquefaction and to quantify losses resulting from ground shaking and liquefaction damage to residential buildings. We present a regional-scale metric to quantify the extent and severity of liquefaction. A sensitivity analysis on epistemic uncertainty indicates that the two most important factors on output liquefaction maps are the empirical liquefaction equation, emphasizing the necessity of incorporating multiple equations in future regional studies, and the water table level, highlighting concerns around data availability and sea level rise. Furthermore, the disaggregation of seismic sources reveals that triggering earthquakes for various extents of liquefaction originate from multiple sources, though primarily nearby faults and large magnitude ruptures. This finding indicates the value of adopting regional probabilistic analysis in future studies to capture the diverse sources and spatial distribution of liquefaction.
More Episodes
Omar Issa, ResiQuant (Co-Founder)/Stanford University A study by FEMA suggests that 20-40% modern code-conforming buildings would be unfit for re-occupancy following a major earthquake (taking months or years to repair) and 15-20% would be rendered irreparable. The increasing human...
Published 11/13/24
Martijn van den Ende, Université Côte d'Azur Already for several years it has been suggested that Distributed Acoustic Sensing (DAS) could be a convenient, low-cost solution for Earthquake Early Warning (EEW). Several studies have investigated the potential of DAS in this context,...
Published 10/09/24