Description
Tara Nye, USGS
Models of earthquake ground motion (both simulations and ground-motion models) can be likened to a puzzle with three primary pieces representing the earthquake source, site conditions, and source-to-site path. Early versions of these models were developed using average behavior of earthquakes across a variety of regions and tectonic environments. Although informative, such models do not capture the unique source, path, and site effects that are expected to have a significant influence on resulting ground motion. This talk highlights several approaches for improving modeling of ground motion by focusing efforts on the different pieces of the ground-motion puzzle. Segments of the talk include (1) constraining rupture parameters of rare tsunami earthquakes, (2) estimating site-specific high-frequency attenuation in the San Francisco Bay Area, and (3) investigating relationships between path effects and crustal properties in the San Francisco Bay Area. With continued refinement to models of ground motion, we can improve confidence and reduce uncertainty in seismic hazard and risk assessments.
Omar Issa, ResiQuant (Co-Founder)/Stanford University
A study by FEMA suggests that 20-40% modern code-conforming buildings would be unfit for re-occupancy following a major earthquake (taking months or years to repair) and 15-20% would be rendered irreparable. The increasing human...
Published 11/13/24
Martijn van den Ende, Université Côte d'Azur
Already for several years it has been suggested that Distributed Acoustic Sensing (DAS) could be a convenient, low-cost solution for Earthquake Early Warning (EEW). Several studies have investigated the potential of DAS in this context,...
Published 10/09/24