05 - Spatio-temporal weather models - Chris Glasbey
Listen now
Description
We develop contrasting spatio-temporal models for two weather variables: solar radiation and rainfall. For solar radiation the aim is to assess the performance of area networks of photo-voltaic cells. Although radiation measured at a sufficiently fine temporal scale has a bimodal marginal distribution (Glasbey, 2001), averages of 10-minute or longer duration can be transformed to be approximately Gaussian, and we fit a spatio-temporal auto-regressive moving average (STARMA) process (Glasbey and Allcroft, 2007). For rainfall, the aim is to disaggregate to a finer spatial scale than that observed. To overcome the difficulty that the marginal distribution of hourly rainfall has a singularity at zero and so is highly non-Gaussian, we apply a monotonic transformation. This defines a latent Gaussian variable, with zero rainfall corresponding to censored values below a threshold, which we model using a spatio-temporal Gaussian Markov random field (Allcroft and Glasbey, 2003). For both models, computations are simplified by approximating space by a torus and using Fourier transforms. Allcroft, D.J. and Glasbey, C.A. (2003). A latent Gaussian Markov random field model for spatio-temporal rainfall disaggregation. Applied Statistics, 52, 487-498. Glasbey CA (2001). Nonlinear autoregressive time series with multivariate Gaussian mixtures as marginal distributions. Applied Statistics, 50, 143-154. Glasbey, C.A. and Allcroft, D.J. (2007). A STARMA model for solar radiation. Available at http://www.bioss.sari.ac.uk/staff/chris.html : http://www.bioss.sari.ac.uk/staff/chris.html Chris Glasbey - Biomathematics and Statistics Scotland Bande son disponible au format mp3 Durée : 51 mn
More Episodes
Noël Cressie - Ohio State University Bande son disponible au format mp3 Durée : 10 mn
Published 01/11/09
Modeling space-time data often relies on parametric covariance models and various assumptions such as full symmetry and separability. These assumptions are important because they simplify the structure of the model and its inference, and ease the possibly extensive computational burden associated...
Published 01/11/09