Episodes
Copernicus’s planetary models contain elements also found in the works of late medieval Islamic astronomers associated with the Maragha School, including the Tusi couple and Ibn al-Shatir’s models for the Moon and Mercury. On this basis many historians have concluded that Copernicus must have gotten his hands on these Maragha ideas somehow or other, even … Continue reading Did Copernicus steal ideas from Islamic astronomers?
Published 11/29/23
Einstein’s theory of special relativity defines time and space operationally, that is to say, in terms of the actions performed to measure them. This is analogous to the constructivist spirit of classical geometry.
Published 07/23/23
Reviel Netz’s New History of Greek Mathematics contains a number of factual errors, both mathematical and historical. Netz is dismissive of traditional scholarship in the field, but in some ways represents a step backwards with respect to that tradition. I argue against Netz’s dismissal of many anecdotal historical testimonies as fabrications, and his “ludic proof” … Continue reading Review of Netz’s New History of Greek Mathematics
Published 10/11/22
Geometry might be innate in the same way as language. There are many languages, each of which is an equally coherent and viable paradigm of thought, and the same can be said for Euclidean and non-Euclidean geometries. As our native language is shaped by experience, so might our “native geometry” be. Yet substantive innate conceptions may be a precondition for any linguistic or spatial thought to be possible at all, as Chomsky said for language and Kant for geometry. Just as language learning...
Published 05/20/22
The discovery of non-Euclidean geometry in the 19th century radically undermined traditional conceptions of the relation between mathematics and the world. Instead of assuming that physical space was the subject matter of geometry, mathematicians elaborated numerous alternative geometries abstractly and formally, distancing themselves from reality and intuition.
Published 02/20/22
Kant developed a philosophy of geometry that explained how geometry can be both knowable in pure thought and applicable to physical reality. Namely, because geometry is built into not only our minds but also the way in which we perceive the world. In this way, Kant solved the applicability problem of classical rationalism, albeit at the cost of making our perception of the world around us inextricably subjective. Kant’s theory also showed how rationalism, and philosophy generally, could be...
Published 11/17/21
Rationalism says mathematical knowledge comes from within, from pure thought; empiricism that it comes from without, from experience and observation. Rationalism led Kepler to look for divine design in the universe, and Descartes to reduce all mechanical phenomena to contact mechanics and all curves in geometry to instrumental generation. Empiricism led Newton to ignore the cause of gravity and dismiss the foundational importance of constructions in geometry.
Published 09/18/21
Euclid inspired Gothic architecture and taught Renaissance painters how to create depth and perspective. More generally, the success of mathematics went to its head, according to some, and created dogmatic individuals dismissive of other branches of learning. Some thought the uncompromising rigour of Euclid went hand in hand with totalitarianism in political and spiritual domains, while others thought creative mathematics was inherently free and liberal.
Published 07/10/21
Philosophical movements in the 17th century tried to mimic the geometrical method of the ancients. Some saw Euclid—with his ruler and compass in hand—as a “doer,” and thus characterised geometry as a “maker’s knowledge.” Others got into a feud about what to do when Euclid was at odds with Aristotle. Descartes thought Euclid’s axioms should be justified via theology.
Published 05/10/21
The use of diagrams in geometry raise questions about the place of the physical, the sensory, the human in mathematical reasoning. Multiple sources of evidence speak to how these dilemmas were tackled in antiquity: the linguistics of diagram construction, the state of drawings in the oldest extant manuscripts, commentaries of philosophers, and implicit assumptions in mathematical proofs.
Published 03/10/21
Euclid spends a lot of time in the Elements constructing figures with his ubiquitous ruler and compass. Why did he think this was important? Why did he think this was better than a geometry that has only theorems and no constructions? In fact, constructions protect geometry from foundational problems to which it would otherwise be susceptible, such as inconsistencies, hidden assumptions, verbal logic fallacies, and diagrammatic fallacies.
Published 01/20/21
The etymology of the term “postulate” suggests that Euclid’s axioms were once questioned. Indeed, the drawing of lines and circles can be regarded as depending on motion, which is supposedly proved impossible by Zeno’s paradoxes. Although whether these postulates correspond to ruler and compass or not is debatable, especially since Euclid seems to restrict himself to a “collapsible” compass in Proposition 2. Furthermore, why did Euclid feel the need to postulate that “all right angles are...
Published 12/10/20
Euclid’s definitions of point, line, and straightness allow a range of mathematical and philosophical interpretation. Historically, however, these definitions may not have been in the original text of the Elements at all. Regardless, the subtlety of defining fundamental concepts such as straightness is best seen by considering the geometry not only of a flat plane but also of curved surfaces.
Published 11/03/20
How should axioms be justified? By appeal to intuition, or sensory perception? Or are axioms legitimated merely indirectly, by their logical consequences? Plato and Aristotle disagreed, and later Newton disagreed even more. Their philosophies can be seen as rival interpretations of Euclid’s Elements.
Published 10/04/20
Euclid’s Elements, read backwards, reduces complex truths to simpler ones, such as the Pythagorean Theorem to the parallelogram area theorem, and that in turn to triangle congruence. How far can this reductive process be taken, and what should be its ultimate goals? Some have advocated that the axiomatic-deductive program in mathematics is best seen in purely logical terms, but this perspective leaves some fundamental challenges unresolved.
Published 09/08/20
The Pythagorean Theorem might have been used in antiquity to build the pyramids, dig tunnels through mountains, and predict eclipse durations, it has been said. But maybe the main interest in the theorem was always more theoretical. Euclid’s proof of the Pythagorean Theorem is perhaps best thought of not as establishing the truth of the theorem but as breaking the truth of the theorem apart into its constituent parts to analyse what makes it tick. Euclid’s Elements as a whole can be read in...
Published 07/30/20
Greek geometry is written in a style adapted to oral teaching. Mathematicians memorised theorems the way bards memorised poems. Several oddities about how Euclid’s Elements is written can be explained this way.
Published 06/21/20
Proof-oriented geometry began with Thales. The theorems attributed to him encapsulate two modes of doing mathematics, suggesting that the idea of proof could have come from either of two sources: attention to patterns and relations that emerge from explorative construction and play, or the realisation that “obvious” things can be demonstrated using formal definitions and proof by contradiction.
Published 05/15/20
In ancient Mesopotamia and Egypt, mathematics meant law and order. Specialised mathematical technocrats were deployed to settle conflicts regarding taxes, trade contracts, and inheritance. Mathematics enabled states to develop civil branches of government instead of relying on force and violence. Mathematics enabled complex economies in which people could count on technically competent administration and an objective justice system.
Published 03/29/20
The Greek islands were geographically predisposed to democracy. The ritualised, antagonistic debates of parliaments and law courts were then generalised to all philosophical domains, creating a unique intellectual climate that put a premium on adversarialism and pure reason. This style of thought proved ideal for mathematics.
Published 02/16/20
What did 17th-century mathematicians such as Newton and Huygens think of Galileo? Not very highly, it turns out. I summarise my case against Galileo using their perspectives and a mathematical lens more generally.
Published 01/11/20
Our picture of Greek antiquity is distorted. Only a fraction of the masterpieces of antiquity have survived. Decisions on what to preserve were made by in ages of vastly inferior intellectual levels. Aristotelian philosophy is more accessible for mediocre minds than advanced mathematics and science. Hence this simpler part of Greek intellectual achievement was eagerly pursued, while technical works were neglected and perished. The alleged predominance of an Aristotelian worldview in antiquity...
Published 12/03/19
What was Galileo’s great innovation in science? To give practical experience more authority than philosophical systems? To insist on mechanical as opposed to teleological or supernatural explanations of natural phenomena? To take mathematical physics as our best window into the fundamental nature of reality as opposed to just a computational tool for a small set of technical problems? No, none of the above. All of these things had been old hat for thousands of years.
Published 10/28/19
Was Galileo “the father of modern science” because he was the first to unite mathematics and physics? Or the first to base science on data and experiments? No. Galileo was not the first to do any of these things, despite often being erroneously credited with these innovations.
Published 09/21/19