Description
At the dawn of the twentieth century, Einstein revolutionized our conception of reality, showing that space and time are not merely the stage on which the show unfolds, but dynamical entities that stretch, bend, and vibrate to give rise to the force we know as gravity. A century later, the vibrations of spacetime have been directly detected as gravitational radiation from colliding black holes, confirming Einstein’s prediction and ushering in a new era in observational astronomy. How did physicists measure these minuscule vibrations, and what does it mean for our understanding of the universe? And what is the next revolution, fomenting right now, in our conception of space and time?
Following its discovery, the quantum became central to our quest for a fundamental understanding of nature, from the structure of atoms and light to the Standard Model of particle physics, and beyond. As we learned how to tame, and increasingly how to domesticate the quantum, this also resulted...
Published 03/08/17
From the beginning of civilization, we have attempted to reduce our world to its simplest components. This search resulted in the discovery of the electron and culminated in the recent detection of the Higgs boson. Our current model of the particle world is stunningly successful in describing the...
Published 03/01/17