Episodes
Nora Belrose, Head of Interpretability Research at EleutherAI, discusses critical challenges in AI safety and development. The conversation begins with her technical work on concept erasure in neural networks through LEACE (LEAst-squares Concept Erasure), while highlighting how neural networks' progression from simple to complex learning patterns could have important implications for AI safety. Many fear that advanced AI will pose an existential threat -- pursuing its own dangerous goals...
Published 11/17/24
Prof. Gennady Pekhimenko (CEO of CentML, UofT) joins us in this *sponsored episode* to dive deep into AI system optimization and enterprise implementation. From NVIDIA's technical leadership model to the rise of open-source AI, Pekhimenko shares insights on bridging the gap between academic research and industrial applications. Learn about "dark silicon," GPU utilization challenges in ML workloads, and how modern enterprises can optimize their AI infrastructure. The conversation explores why...
Published 11/13/24
Eliezer Yudkowsky and Stephen Wolfram discuss artificial intelligence and its potential existen‑ tial risks. They traversed fundamental questions about AI safety, consciousness, computational irreducibility, and the nature of intelligence. The discourse centered on Yudkowsky’s argument that advanced AI systems pose an existential threat to humanity, primarily due to the challenge of alignment and the potential for emergent goals that diverge from human values. Wolfram, while...
Published 11/11/24
Francois Chollet, a prominent AI expert and creator of ARC-AGI, discusses intelligence, consciousness, and artificial intelligence. Chollet explains that real intelligence isn't about memorizing information or having lots of knowledge - it's about being able to handle new situations effectively. This is why he believes current large language models (LLMs) have "near-zero intelligence" despite their impressive abilities. They're more like sophisticated memory and pattern-matching systems...
Published 11/06/24
Anil Ananthaswamy is an award-winning science writer and former staff writer and deputy news editor for the London-based New Scientist magazine. Machine learning systems are making life-altering decisions for us: approving mortgage loans, determining whether a tumor is cancerous, or deciding if someone gets bail. They now influence developments and discoveries in chemistry, biology, and physics—the study of genomes, extrasolar planets, even the intricacies of quantum systems. And all...
Published 11/04/24
Professor Michael Levin explores the revolutionary concept of diverse intelligence, demonstrating how cognitive capabilities extend far beyond traditional brain-based intelligence. Drawing from his groundbreaking research, he explains how even simple biological systems like gene regulatory networks exhibit learning, memory, and problem-solving abilities. Levin introduces key concepts like "cognitive light cones" - the scope of goals a system can pursue - and shows how these ideas are...
Published 10/24/24
Will Williams is CTO of Speechmatics in Cambridge. In this sponsored episode - he shares deep technical insights into modern speech recognition technology and system architecture. The episode covers several key technical areas: * Speechmatics' hybrid approach to ASR, which focusses on unsupervised learning methods, achieving comparable results with 100x less data than fully supervised approaches. Williams explains why this is more efficient and generalizable than end-to-end models like...
Published 10/23/24
Dr. Sanjeev Namjoshi, a machine learning engineer who recently submitted a book on Active Inference to MIT Press, discusses the theoretical foundations and practical applications of Active Inference, the Free Energy Principle (FEP), and Bayesian mechanics. He explains how these frameworks describe how biological and artificial systems maintain stability by minimizing uncertainty about their environment. DO YOU WANT WORK ON ARC with the MindsAI team (current ARC winners)? MLST is...
Published 10/22/24
Dr. Joscha Bach discusses advanced AI, consciousness, and cognitive modeling. He presents consciousness as a virtual property emerging from self-organizing software patterns, challenging panpsychism and materialism. Bach introduces "Cyberanima," reinterpreting animism through information processing, viewing spirits as self-organizing software agents. He addresses limitations of current large language models and advocates for smaller, more efficient AI models capable of reasoning from first...
Published 10/20/24
Alessandro Palmarini is a post-baccalaureate researcher at the Santa Fe Institute working under the supervision of Melanie Mitchell. He completed his undergraduate degree in Artificial Intelligence and Computer Science at the University of Edinburgh. Palmarini's current research focuses on developing AI systems that can efficiently acquire new skills from limited data, inspired by François Chollet's work on measuring intelligence. His work builds upon the DreamCoder program synthesis system,...
Published 10/19/24
François Chollet discusses the limitations of Large Language Models (LLMs) and proposes a new approach to advancing artificial intelligence. He argues that current AI systems excel at pattern recognition but struggle with logical reasoning and true generalization. This was Chollet's keynote talk at AGI-24, filmed in high-quality. We will be releasing a full interview with him shortly. A teaser clip from that is played in the intro! Chollet introduces the Abstraction and Reasoning...
Published 10/12/24
Ivan Zhang, co-founder of Cohere, discusses the company's enterprise-focused AI solutions. He explains Cohere's early emphasis on embedding technology and training models for secure environments. Zhang highlights their implementation of Retrieval-Augmented Generation in healthcare, significantly reducing doctor preparation time. He explores the shift from monolithic AI models to heterogeneous systems and the importance of improving various AI system components. Zhang shares insights on...
Published 10/10/24
Prof. Tim Rocktäschel, AI researcher at UCL and Google DeepMind, talks about open-ended AI systems. These systems aim to keep learning and improving on their own, like evolution does in nature. Ad: Are you a hardcore ML engineer who wants to work for Daniel Cahn at SlingshotAI building AI for mental health? Give him an email! - [email protected] TOC: 00:00:00 Introduction to Open-Ended AI and Key Concepts 00:01:37 Tim Rocktäschel's Background and Research Focus 00:06:25...
Published 10/04/24
Ben Goertzel discusses AGI development, transhumanism, and the potential societal impacts of superintelligent AI. He predicts human-level AGI by 2029 and argues that the transition to superintelligence could happen within a few years after. Goertzel explores the challenges of AI regulation, the limitations of current language models, and the need for neuro-symbolic approaches in AGI research. He also addresses concerns about resource allocation and cultural perspectives on...
Published 10/01/24
AI expert Prof. Gary Marcus doesn't mince words about today's artificial intelligence. He argues that despite the buzz, chatbots like ChatGPT aren't as smart as they seem and could cause real problems if we're not careful. Marcus is worried about tech companies putting profits before people. He thinks AI could make fake news and privacy issues even worse. He's also concerned that a few big tech companies have too much power. Looking ahead, Marcus believes the AI hype will die down as...
Published 09/24/24
Prof. Mark Solms, a neuroscientist and psychoanalyst, discusses his groundbreaking work on consciousness, challenging conventional cortex-centric views and emphasizing the role of brainstem structures in generating consciousness and affect. MLST is sponsored by Brave: The Brave Search API covers over 20 billion webpages, built from scratch without Big Tech biases or the recent extortionate price hikes on search API access. Perfect for AI model training and retrieval augmentated...
Published 09/18/24
Dr. Patrick Lewis, who coined the term RAG (Retrieval Augmented Generation) and now works at Cohere, discusses the evolution of language models, RAG systems, and challenges in AI evaluation. MLST is sponsored by Brave: The Brave Search API covers over 20 billion webpages, built from scratch without Big Tech biases or the recent extortionate price hikes on search API access. Perfect for AI model training and retrieval augmented generation. Try it now - get 2,000 free queries monthly at...
Published 09/16/24
Ashley Edwards, who was working at DeepMind when she co-authored the Genie paper and is now at Runway, covered several key aspects of the Genie AI system and its applications in video generation, robotics, and game creation. MLST is sponsored by Brave: The Brave Search API covers over 20 billion webpages, built from scratch without Big Tech biases or the recent extortionate price hikes on search API access. Perfect for AI model training and retrieval augmentated generation. Try it now -...
Published 09/13/24
Saurabh Baji discusses Cohere's approach to developing and deploying large language models (LLMs) for enterprise use. * Cohere focuses on pragmatic, efficient models tailored for business applications rather than pursuing the largest possible models. * They offer flexible deployment options, from cloud services to on-premises installations, to meet diverse enterprise needs. * Retrieval-augmented generation (RAG) is highlighted as a critical capability, allowing models to leverage...
Published 09/12/24
David Hanson, CEO of Hanson Robotics and creator of the humanoid robot Sofia, explores the intersection of artificial intelligence, ethics, and human potential. In this thought-provoking interview, Hanson discusses his vision for developing AI systems that embody the best aspects of humanity while pushing beyond our current limitations, aiming to achieve what he calls "super wisdom." YT version: https://youtu.be/LFCIEhlsozU MLST is sponsored by Brave: The Brave Search API covers over...
Published 09/10/24
David Spivak, a mathematician known for his work in category theory, discusses a wide range of topics related to intelligence, creativity, and the nature of knowledge. He explains category theory in simple terms and explores how it relates to understanding complex systems and relationships. MLST is sponsored by Brave: The Brave Search API covers over 20 billion webpages, built from scratch without Big Tech biases or the recent extortionate price hikes on search API access. Perfect for AI...
Published 09/05/24
Jürgen Schmidhuber, the father of generative AI shares his groundbreaking work in deep learning and artificial intelligence. In this exclusive interview, he discusses the history of AI, some of his contributions to the field, and his vision for the future of intelligent machines. Schmidhuber offers unique insights into the exponential growth of technology and the potential impact of AI on humanity and the universe. YT version: https://youtu.be/DP454c1K_vQ MLST is sponsored by...
Published 08/28/24
Professor Pedro Domingos, is an AI researcher and professor of computer science. He expresses skepticism about current AI regulation efforts and argues for faster AI development rather than slowing it down. He also discusses the need for new innovations to fulfil the promises of current AI techniques. MLST is sponsored by Brave: The Brave Search API covers over 20 billion webpages, built from scratch without Big Tech biases or the recent extortionate price hikes on search API access....
Published 08/25/24
Andrew Ilyas, a PhD student at MIT who is about to start as a professor at CMU. We discuss Data modeling and understanding how datasets influence model predictions, Adversarial examples in machine learning and why they occur, Robustness in machine learning models, Black box attacks on machine learning systems, Biases in data collection and dataset creation, particularly in ImageNet and Self-selection bias in data and methods to address it. MLST is sponsored by Brave: The Brave Search API...
Published 08/22/24