Dr. Brandon Rohrer - Robotics, Creativity and Intelligence
Description
Brandon Rohrer who obtained his Ph.D from MIT is driven by understanding algorithms ALL the way down to their nuts and bolts, so he can make them accessible to everyone by first explaining them in the way HE himself would have wanted to learn!
Please support us on Patreon for loads of exclusive content and private Discord:
https://patreon.com/mlst (public discord)
https://discord.gg/aNPkGUQtc5
https://twitter.com/MLStreetTalk
Brandon Rohrer is a seasoned data science leader and educator with a rich background in creating robust, efficient machine learning algorithms and tools. With a Ph.D. in Mechanical Engineering from MIT, his expertise encompasses a broad spectrum of AI applications — from computer vision and natural language processing to reinforcement learning and robotics. Brandon's career has seen him in Principle-level roles at Microsoft and Facebook. An educator at heart, he also shares his knowledge through detailed tutorials, courses, and his forthcoming book, "How to Train Your Robot."
YT version: https://www.youtube.com/watch?v=4Ps7ahonRCY
Brandon's links:
https://github.com/brohrer
https://www.youtube.com/channel/UCsBKTrp45lTfHa_p49I2AEQ
https://www.linkedin.com/in/brohrer/
How transformers work:
https://e2eml.school/transformers
Brandon's End-to-End Machine Learning school courses, posts, and tutorials
https://e2eml.school
Free course:
https://end-to-end-machine-learning.teachable.com/p/complete-course-library-full-end-to-end-machine-learning-catalog
Blog: https://e2eml.school/blog.html
Ziptie: Learning Useful Features [Brandon Rohrer]
https://www.brandonrohrer.com/ziptie
TOC should be baked into the MP3 file now
00:00:00 - Intro to Brandon
00:00:36 - RLHF
00:01:09 - Limitations of transformers
00:07:23 - Agency - we are all GPTs
00:09:07 - BPE / representation bias
00:12:00 - LLM true believers
00:16:42 - Brandon's style of teaching
00:19:50 - ML vs real world = Robotics
00:29:59 - Reward shaping
00:37:08 - No true Scotsman - when do we accept capabilities as real
00:38:50 - Externalism
00:43:03 - Building flexible robots
00:45:37 - Is reward enough
00:54:30 - Optimization curse
00:58:15 - Collective intelligence
01:01:51 - Intelligence + creativity
01:13:35 - ChatGPT + Creativity
01:25:19 - Transformers Tutorial
Nora Belrose, Head of Interpretability Research at EleutherAI, discusses critical challenges in AI safety and development. The conversation begins with her technical work on concept erasure in neural networks through LEACE (LEAst-squares Concept Erasure), while highlighting how neural networks'...
Published 11/17/24
Prof. Gennady Pekhimenko (CEO of CentML, UofT) joins us in this *sponsored episode* to dive deep into AI system optimization and enterprise implementation. From NVIDIA's technical leadership model to the rise of open-source AI, Pekhimenko shares insights on bridging the gap between academic...
Published 11/13/24