Dr. Brandon Rohrer - Robotics, Creativity and Intelligence
Listen now
Description
Brandon Rohrer who obtained his Ph.D from MIT is driven by understanding algorithms ALL the way down to their nuts and bolts, so he can make them accessible to everyone by first explaining them in the way HE himself would have wanted to learn! Please support us on Patreon for loads of exclusive content and private Discord: https://patreon.com/mlst (public discord) https://discord.gg/aNPkGUQtc5 https://twitter.com/MLStreetTalk Brandon Rohrer is a seasoned data science leader and educator with a rich background in creating robust, efficient machine learning algorithms and tools. With a Ph.D. in Mechanical Engineering from MIT, his expertise encompasses a broad spectrum of AI applications — from computer vision and natural language processing to reinforcement learning and robotics. Brandon's career has seen him in Principle-level roles at Microsoft and Facebook. An educator at heart, he also shares his knowledge through detailed tutorials, courses, and his forthcoming book, "How to Train Your Robot." YT version: https://www.youtube.com/watch?v=4Ps7ahonRCY Brandon's links: https://github.com/brohrer https://www.youtube.com/channel/UCsBKTrp45lTfHa_p49I2AEQ https://www.linkedin.com/in/brohrer/ How transformers work: https://e2eml.school/transformers Brandon's End-to-End Machine Learning school courses, posts, and tutorials https://e2eml.school Free course: https://end-to-end-machine-learning.teachable.com/p/complete-course-library-full-end-to-end-machine-learning-catalog Blog: https://e2eml.school/blog.html Ziptie: Learning Useful Features [Brandon Rohrer] https://www.brandonrohrer.com/ziptie TOC should be baked into the MP3 file now 00:00:00 - Intro to Brandon 00:00:36 - RLHF 00:01:09 - Limitations of transformers 00:07:23 - Agency - we are all GPTs 00:09:07 - BPE / representation bias 00:12:00 - LLM true believers 00:16:42 - Brandon's style of teaching 00:19:50 - ML vs real world = Robotics 00:29:59 - Reward shaping 00:37:08 - No true Scotsman - when do we accept capabilities as real 00:38:50 - Externalism 00:43:03 - Building flexible robots 00:45:37 - Is reward enough 00:54:30 - Optimization curse 00:58:15 - Collective intelligence 01:01:51 - Intelligence + creativity 01:13:35 - ChatGPT + Creativity 01:25:19 - Transformers Tutorial
More Episodes
Nora Belrose, Head of Interpretability Research at EleutherAI, discusses critical challenges in AI safety and development. The conversation begins with her technical work on concept erasure in neural networks through LEACE (LEAst-squares Concept Erasure), while highlighting how neural networks'...
Published 11/17/24
Prof. Gennady Pekhimenko (CEO of CentML, UofT) joins us in this *sponsored episode* to dive deep into AI system optimization and enterprise implementation. From NVIDIA's technical leadership model to the rise of open-source AI, Pekhimenko shares insights on bridging the gap between academic...
Published 11/13/24