Radial Basis Functions for Computational Geoscience
Listen now
Description
Current community models in the geosciences employ a variety of numerical methods from finite-difference, finite-volume, finite- or spectral elements, to pseudospectral methods. All have specialized strengths but also serious weaknesses. The first three methods are generally considered low-order and can involve high algorithmic complexity (as in triangular elements or unstructured meshes). Global spectral methods do not practically allow for local mesh refinement and often involve cumbersome algebra. Radial basis functions have the advantage of being spectrally accurate for arbitrary node layouts in multi-dimensions with extreme algorithmic simplicity, and naturally permits local node refinement. We will show test examples ranging from vortex roll-ups, modeling idealized cyclogenesis, to the unsteady nonlinear flows posed by the shallow water equations to 3-D mantle convection in the earth’s interior.
More Episodes
Algebraic statistics advocates polynomial algebra as a tool for addressing problems in statistics and its applications. This connection is based on the fact that most statistical models are defined either parametrically or implicitly via polynomial equations. The idea is summarized by the phrase...
Published 04/28/11
Mathematical concepts are often difficult for students to acquire. This difficulty is evidenced by failure of knowledge to transfer from the learning situation to a novel isomorphic situation. What choice of instantiation most effectively facilitates successful transfer? One possibility is that...
Published 04/27/11
This presentation does not require previous knowledge of C*-algebras, labeled graphs, or group actions. A labeled graph over an alphabet consists of a directed graph together with a labeling map . One can associate a C*-algebra to a labeled graph in such a way that if the labeling is...
Published 04/08/11