36 - Bond Energies, the Boltzmann Factor and Entropy
Listen now
Description
After discussing the classic determination of the heat of atomization of graphite by Chupka and Inghram, the values of bond dissociation energies, and the utility of average bond energies, the lecture focuses on understanding equilibrium and rate processes through statistical mechanics. The Boltzmann factor favors minimal energy in order to provide the largest number of different arrangements of "bits" of energy. The slippery concept of disorder is illustrated using Couette flow. Entropy favors "disordered arrangements" because there are more of them than there are of recognizable ordered arrangements.
More Episodes
After discussing the statistical basis of the law of mass action, the lecture turns to developing a framework for understanding reaction rates. A potential energy surface that associates energy with polyatomic geometry can be realized physically for a linear, triatomic system, but it is more...
Published 10/05/09
Professor Barry Sharpless of Scripps describes the Nobel-prizewinning development of titanium-based catalysts for stereoselective oxidation, the mechanism of their reactions, and their use in preparing esomeprazole. Conformational energy of cyclic alkanes illustrates the use of molecular mechanics.
Published 10/05/09
Although molecular mechanics is imperfect, it is useful for discussing molecular structure and energy in terms of standard covalent bonds. Analysis of the Cambridge Structural Database shows that predicting bond distances to within 1% required detailed categorization of bond types. Early attempts...
Published 10/05/09