Inferring the spatial code of cell-cell interactions and communication across a whole animal body
Listen now
Description
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.11.22.392217v1?rss=1 Authors: Armingol, E., Joshi, C. J., Baghdassarian, H., Shamie, I., Ghaddar, A., Chan, J., Her, H.-L., O'Rourke, E. J., Lewis, N. E. Abstract: Cell-cell interactions are crucial for multicellular organisms as they shape cellular function and ultimately organismal phenotype. However, the spatial code embedded in the molecular interactions that drive and sustain spatial organization, and in the organization that in turns drives intercellular interactions across a living animal remains to be elucidated. Here we use the expression of ligand-receptor pairs obtained from a whole-body single-cell transcriptome of Caenorhabditis elegans larvae to compute the potential for intercellular interactions through a Bray-Curtis-like metric. Leveraging a 3D atlas of C. elegans' cells, we implement a genetic algorithm to select the ligand-receptor pairs most informative of the spatial organization of cells. Validating the strategy, the selected ligand-receptor pairs are involved in known cell-migration and morphogenesis processes and we confirm a negative correlation between cell-cell distances and interactions. Thus, our computational framework helps identify cell-cell interactions and their relationship with intercellular distances, and decipher molecular bases encoding spatial information in a whole animal. Furthermore, it can also be used to elucidate associations with any other intercellular phenotype and applied to other multicellular organisms. Copy rights belong to original authors. Visit the link for more info
More Episodes
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.11.21.392621v1?rss=1 Authors: Chibani, C. M., Mahnert, A., Borrel, G., Almeida, A., Werner, A., Brugere, J.-F., Gribaldo, S., Finn, R. D., Schmitz, R. A., Moissl-Eichinger, C. Abstract: The human gut microbiome plays an...
Published 11/22/20
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.11.21.392613v1?rss=1 Authors: Moussa, M. M. R., Mandoiu, I. I. Abstract: The variation in gene expression profiles of cells captured in different phases of the cell cycle can interfere with cell type identification and...
Published 11/22/20
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.11.21.392761v1?rss=1 Authors: Barthelson, K., Pederson, S. M., Newman, M., Jiang, H., Lardelli, M. Abstract: Background: Mutations in PRESENILIN 2 (PSEN2) cause early disease onset familial Alzheimer's disease (EOfAD) but their...
Published 11/22/20