Identification of cell-type marker genes from plant single-cell RNA-seq data using machine learning
Listen now
Description
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.11.22.393165v1?rss=1 Authors: Yan, H., Song, Q., Lee, J., Schiefelbein, J., Li, S. Abstract: An essential step of single-cell RNA sequencing analysis is to classify specific cell types with marker genes in order to dissect the biological functions of each individual cell. In this study, we integrated five published scRNA-seq datasets from the Arabidopsis root containing over 25,000 cells and 17 cell clusters. We have compared the performance of seven machine learning methods in classifying these cell types, and determined that the random forest and support vector machine methods performed best. Using feature selection with these two methods and a correlation method, we have identified 600 new marker genes for 10 root cell types, and more than 70% of these machine learning-derived marker genes were not identified before. We found that these new markers not only can assign cell types consistently as the previously known cell markers, but also performed better than existing markers in several evaluation metrics including accuracy and sensitivity. Markers derived by the random forest method, in particular, were expressed in 89-98% of cells in endodermis, trichoblast, and cortex clusters, which is a 29-67% improvement over known markers. Finally, we have found 111 new orthologous marker genes for the trichoblast in five plant species, which expands the number of marker genes by 58-170% in non-Arabidopsis plants. Our results represent a new approach to identify cell-type marker genes from scRNA-seq data and pave the way for cross-species mapping of scRNA-seq data in plants. Copy rights belong to original authors. Visit the link for more info
More Episodes
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.11.21.392621v1?rss=1 Authors: Chibani, C. M., Mahnert, A., Borrel, G., Almeida, A., Werner, A., Brugere, J.-F., Gribaldo, S., Finn, R. D., Schmitz, R. A., Moissl-Eichinger, C. Abstract: The human gut microbiome plays an...
Published 11/22/20
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.11.21.392613v1?rss=1 Authors: Moussa, M. M. R., Mandoiu, I. I. Abstract: The variation in gene expression profiles of cells captured in different phases of the cell cycle can interfere with cell type identification and...
Published 11/22/20
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.11.21.392761v1?rss=1 Authors: Barthelson, K., Pederson, S. M., Newman, M., Jiang, H., Lardelli, M. Abstract: Background: Mutations in PRESENILIN 2 (PSEN2) cause early disease onset familial Alzheimer's disease (EOfAD) but their...
Published 11/22/20