Fast superresolution microscopy – with Lattice SIM
Listen now
Description
Your life sciences research often requires you to measure, quantify and understand the finest details and sub-cellular structures of your sample. You may be working with tissue, bacteria, organoids, neurons, living or fixed -cells and many different labels. In this webinar, we will explain how Elyra 7 with Lattice SIM takes you beyond the diffraction limit of conventional microscopy to image your samples with superresolution. Learn how to examine the fastest processes in living samples – in large fields of view, in 3D, over long time periods, and with multiple colors. The new Lattice SIM technology of Elyra 7 brings structured illumination microscopy (SIM) to a new level. Groundbreaking light efficiency gives you gentle superresolution imaging with incredibly high speed – at 255 fps you will get your data faster than ever before. See how Elyra 7 lets you combine Lattice SIM with single molecule localization microscopy (SMLM) for techniques such as PALM, dSTORM and PAINT. Choose freely among your labels when imaging with resolutions down to 20 nm laterally. High power laser lines allow you to image your sample with ease, from green to far red. Elyra 7 is also very flexible: you can employ a wealth of contrasting techniques and combine them with optical sectioning. The new Apotome mode gives you superfast optical sectioning of your 3D samples. All that, plus Elyra 7 works seamlessly with your ZEISS SEMs in a correlative workflow.
More Episodes
#29 — Ever wondered why you have to add protease inhibitors to your lysis buffer? In this episode of Mentors At Your Benchside, we’ll tell you all about protease inhibitors, why they’re important and how to use and store them. To learn more about protease inhibitors and to access the table with...
Published 09/27/22
Published 09/27/22
#28 — SDS-PAGE gels can be run at constant current, constant voltage, or constant power. But which is best? Listen to this episode of Mentors at Your Benchside to discover the differences between current, voltage, and power, and how they affect how your gels run. Visit the original article for a...
Published 09/22/22