Episodes
This 86th episode of Learning Machines 101 discusses the problem of assigning probabilities to a possibly infinite set of observed outcomes in a space-time continuum which corresponds to our physical world. The machine learning algorithm uses information about the frequency of environmental events to support learning. Along the way we discuss measure theory mathematical tools such as sigma fields, and the Radon-Nikodym probability density function as well as the intriguing Banach-Tarski paradox.
Published 07/20/21
Published 07/20/21
This 85th episode of Learning Machines 101 discusses formal convergence guarantees for a broad class of machine learning algorithms designed to minimize smooth non-convex objective functions using batch learning methods. Simple mathematical formulas are presented based upon research from the late 1960s by Philip Wolfe and G. Zoutendijk that ensure convergence of the generated sequence of parameter vectors. Check out: www.learningmachines101.com for more details!!! #machinelearning
Published 05/21/21
In this episode of Learning Machines 101, we review Chapter 6 of my book “Statistical Machine Learning” which introduces methods for analyzing the behavior of machine inference algorithms and machine learning algorithms as dynamical systems. We show that when dynamical systems can be viewed as special types of optimization algorithms, the behavior of those systems even when they are highly nonlinear and high-dimensional can be analyzed.
Published 01/05/21
This particular podcast covers the material from Chapter 5 of my new book “Statistical Machine Learning: A unified framework” which is now available! The book chapter shows how matrix calculus is very useful for the analysis and design of both linear and nonlinear learning machines with lots of examples. We discuss the relevance of the matrix chain rule and matrix Taylor series for machine learning algorithm design and the analysis of generalization performance! Check out:...
Published 08/29/20
The main focus of this particular episode covers the material in Chapter 4 of my new forthcoming book titled “Statistical Machine Learning: A unified framework.”  Chapter 4 is titled “Linear Algebra for Machine Learning. Many important and widely used machine learning algorithms may be interpreted as linear machines and this chapter shows how to use linear algebra to analyze and design such machines. Check out: www.statisticalmachinelearning.com
Published 07/23/20
This podcast covers the material in Chapter 3 of my new book “Statistical Machine Learning: A unified framework” which discusses how to formally define machine learning algorithms. A learning machine is viewed as a dynamical system that is minimizing an objective function. In addition, the knowledge structure of the learning machine is interpreted as a preference relation graph w implicitly specified by the objective function. Also, the new book “The Practioner’s Guide to Graph Data” is ...
Published 04/09/20
This particular podcast covers the material in Chapter 2 of my new book “Statistical Machine Learning: A unified framework” with expected publication date May 2020. In this episode we discuss Chapter 2 of my new book, which discusses how to represent knowledge using set theory notation. Chapter 2 is titled “Set Theory for Concept Modeling”.
Published 02/29/20
This particular podcast covers the material in Chapter 1 of my new (unpublished) book “Statistical Machine Learning: A unified framework”. In this episode we discuss Chapter 1 of my new book, which shows how supervised, unsupervised, and reinforcement learning algorithms can be viewed as special cases of a general empirical risk minimization framework. This is useful because it provides a framework for not only understanding existing algorithms but for suggesting new algorithms for specific...
Published 12/24/19
This particular podcast (Episode 78 of Learning Machines 101) is the initial episode in a new special series of episodes designed to provide commentary on a new book that I am in the process of writing. In this episode we discuss books, software, courses, and podcasts designed to help you become a machine learning expert! For more information, check out: www.learningmachines101.com
Published 10/24/19
In this 77th episode of www.learningmachines101.com , we explain the proper semantic interpretation of the Bayesian Information Criterion (BIC) and emphasize how this semantic interpretation is fundamentally different from AIC (Akaike Information Criterion) model selection methods. Briefly, BIC is used to estimate the probability of the training data given the probability model, while AIC is used to estimate out-of-sample prediction error. The probability of the training data given the model...
Published 05/02/19
The precise semantic interpretation of the Akaike Information Criterion (AIC) and Generalized Akaike Information Criterion (GAIC) for selecting the best model are provided, explicit assumptions are provided for the AIC and GAIC to be valid, and explicit formulas are provided for the AIC and GAIC so they can be used in practice. AIC and GAIC provide a way of estimating the average prediction error of your learning machine on test data without using test data or cross-validation methods.
Published 01/23/19
In this episode, we explore the question of what can computers do as well as what computers can’t do using the Turing Machine argument. Specifically, we discuss the computational limits of computers and raise the question of whether such limits pertain to biological brains and other non-standard computing machines.
Published 12/12/18
The challenges of representing knowledge using rules are discussed. Specifically, these challenges include: issues of feature representation, having an adequate number of rules, obtaining rules that are not inconsistent, and having rules that handle special cases and situations. To learn more, visit: www.learningmachines101.com
Published 06/30/18
This is a remix of the original second episode Learning Machines 101 which describes in a little more detail how the computer program that Arthur Samuel developed in 1959 learned to play checkers by itself without human intervention using a mixture of classical artificial intelligence search methods and artificial neural network learning algorithms. The podcast ends with a book review of Professor Nilsson’s book: “The Quest for Artificial Intelligence: A History of Ideas and Achievements”.
Published 04/25/18
This podcast is basically a remix of the first and second episodes of Learning Machines 101 and is intended to serve as the new introduction to the Learning Machines 101 podcast series. The book "Computation as Done by Brains and Machines" by Professor James A. Anderson is briefly reviewed. For more information, please visit: www.learningmachines101.com 
Published 03/31/18
This episode of Learning Machines 101 explains how to use first-order logic and Markov logic nets to represent common sense knowledge in machine learning algorithms links to free software for implementing Markov logic nets and a free database of common-sense knowledge is provided.
Published 02/23/18
This 70th episode of Learning Machines 101 we discuss how to identify facial emotion expressions in images using an advanced clustering technique called Stochastic Neighborhood Embedding for: improving online communications, identifying terrorists, improving lie detector tests, improving athletic performance, and designing smart advertising which looks at a customer’s face to determine if they are bored or interested. The machine learning text “Pattern Recognition and Machine Learning” is...
Published 01/31/18
This 69th episode of Learning Machines 101 provides a short overview of the 2017 Neural Information Processing Systems conference with a focus on the development of methods for teaching learning machines rather than simply training them on examples. In addition, a book review of the book “Deep Learning” is provided. 
Published 12/16/17
Simple mathematical formulas are presented that ensure convergence of a generated sequence of parameter vectors which are updated using an iterative algorithm consisting of adding a stepsize number multiplied by a search direction vector to the current parameter values and repeating this process. These formulas may be used as the basis for the design of artificially intelligent smart automatic learning rate selection algorithms. Please visit:  www.learningmachines101.com
Published 09/26/17
In this episode we discuss how to learn to solve constraint satisfaction inference problems. The goal of the inference process is to infer the most probable values for unobservable variables. These constraints, however, can be learned from experience. Specifically, the important machine learning method for handling unobservable components of the data using Expectation Maximization is introduced. Check it out at: www.learningmachines101.com
Published 08/21/17
In this episode of Learning Machines 101 (www.learningmachines101.com) we discuss how to solve constraint satisfaction inference problems where knowledge is represented as a large unordered collection of complicated probabilistic constraints among a collection of variables. The goal of the inference process is to infer the most probable values of the unobservable variables given the observable variables. Specifically, Monte Carlo Markov Chain ( MCMC ) methods are discussed.
Published 07/17/17
In this episode rerun we introduce the concept of gradient descent which is the fundamental principle underlying learning in the majority of deep learning and neural network learning algorithms. Check out the website: www.learningmachines101.com to obtain a transcript of this episode!
Published 06/19/17
In this rerun of episode 24 we explore the concept of evolutionary learning machines. That is, learning machines that reproduce themselves in the hopes of evolving into more intelligent and smarter learning machines. This leads us to the topic of stochastic model search and evaluation. Check out the blog with additional technical references at: www.learningmachines101.com 
Published 05/15/17
This 63rd episode of Learning Machines 101 discusses how to build reinforcement learning machines which become smarter with experience but do not use this acquired knowledge to modify their actions and behaviors. This episode explains how to build reinforcement learning machines whose behavior evolves as the learning machines become increasingly smarter. The essential idea for the construction of such reinforcement learning machines is based upon first developing a supervised learning...
Published 04/20/17