LM101-051: How to Use Radial Basis Function Perceptron Software for Supervised Learning[Rerun]
Listen now
Description
This particular podcast is a RERUN of Episode 20 and describes step by step how to download free software which can be used to make predictions using a feedforward artificial neural network whose hidden units are radial basis functions. This is essentially a nonlinear regression modeling problem. We show the performance of this nonlinear learning machine is substantially better on test data set than the linear learning machine software presented in Episode 13. Basically performance for the linear learning machine was about 13% because the data set was specifically designed to be unlearnable by a linear learning machine, while the performance for the nonlinear machine learning software in this episode is about 70%. Again, I'm a little disappointed that only a few people have downloaded the software and tried things out. You can download windows executable, mac executable, or the MATLAB source code. It's important to actually experiment with real machine learning software if you want to learn about machine learning!  Check out:  www.learningmachines101.com to obtain transcripts of this podcast and download free machine learning software! Or tweet us at: @lm101talk    
More Episodes
This 86th episode of Learning Machines 101 discusses the problem of assigning probabilities to a possibly infinite set of observed outcomes in a space-time continuum which corresponds to our physical world. The machine learning algorithm uses information about the frequency of environmental...
Published 07/20/21
Published 07/20/21
This 85th episode of Learning Machines 101 discusses formal convergence guarantees for a broad class of machine learning algorithms designed to minimize smooth non-convex objective functions using batch learning methods. Simple mathematical formulas are presented based upon research from the late...
Published 05/21/21